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ABSTRACT 
 

A design and verification methodology of advanced SRAM bitcell design is described.  Dense bitcells, drawn for 
embedded SRAM memory applications, are drawn and simulated for cell functionality and stability.  After first-pass 
design, lithographic correction is determined using analytical and iterative simulation routines.   Analytical corrections 
are tailored to comprehend not only specific tool and material platforms associated with the process technology, but are 
also optimized to account for process integration issues arising from mask layer to mask layer interactions.  Lithography 
process windows are modeled though simulations based on specific stepper illumination scheme, and material systems 
(resist, ARC’s, etc).   Process integration windows are modeled through overlay of simulated patterns (e.g. contact & 
diffusion) while taking into account process control limits of misalignment and critical dimension (CD).  Comparison of 
simulated to electrical bitcell results are discussed and manufacturability considerations are addressed through electrical 
responses of bitcell-specific diagnostic test structures.   
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1. INTRODUCTION 

 
Scaled SRAM bitcell area is a key competitive advantage for product applications requiring significant densities of 
embedded SRAM.  To achieve industry-competitive bitcell areas, features must be drawn to design rules that are scaled 
beyond those of standard logic-process design rules.  Effectively, numerous logic design rules are violated within the cell 
array.  This not only requires a robust bitcell layout and simulation methodology accounting for process integration and 
electrical performance tradeoffs, but also demands a comprehensive lithographic correction strategy.     
 
Since embedded bitcell design is increasingly reliant on lithographic simulation tools, it is imperative to first evaluate 
manufacturing margins using analytical handcrafted correction.  In many cases, rules or model-based OPC/PSM 
generation techniques have not yet matured to produce equivalence between drawn and printed features for advanced 
process technologies. This is particularly true in embedded SRAM regions where different poly pitches and changes in 
feature periodicity, such as at interface or strapping regions, are always present.  Critical pattern margins are a strong 
function of stepper/scanner platform and illumination schemes, ARC/photoresist selection, and mask processing.  As a 
result, automated correction routines on initial bitcell / product designs provide inadequate process margins and 
insufficient manufacturing yield of embedded SRAM IP.  
 
Higher quality embedded SRAM IP and faster times to yield entitlement are key milestones that can be achieved by 
using a phased bitcell development approach.  In this work, we demonstrate a bitcell development schedule for rapid cell 
design and manufacturability.  This approach consists of first pass cell design, electrical simulation for stability analysis, 
lithographic simulation, and electrical evaluation of optimized bitcell designs.   
 

2. MOTIVATION & CELL DESIGN 
 

Bitcell areas are targeted based on product application.  Key technical tradeoffs including area, power, cell current, static 
noise margin, and manufacturing margins must all be considered when optimizing cell designs.  Ultimately, bitcell 
device sizes and intra-cell feature dimensions are derived from a proper balance of each of these key technical care-



abouts. As such, a comprehensive lithographic strategy is imperative to not only enable time-zero bitcell functionality, 
but to also provide manufacturable process margins in the larger process flow.     
 
Fundamental cell functionality considerations must be addressed in conjunction with lithographic correction strategies.  
In particular, static noise margin (SNM) must be considered as a key figure-of-merit of bitcell robustness.   Figures 1 and 
2 illustrate a standard six-transistor (6-T) bitcell schematic [1] and corresponding simulated “butterfly” curves.  
Separation of these curves (SNM) indicates noise immunity of the bitcell to disturb events during circuit read operations.     
Figure 3 illustrates simulated and electrically measured curves as obtained from an un-optimized bitcell in the present 
work. An asymmetrical response can be seen in the electrical results, indicating a mismatch in inverter behavior between 
each side of the bitcell.  These inherent asymmetries, resulting from device mismatch events, reduce the overall noise 
immunity of the bitcell to that of the lowest SNM value of the measured response. Cell current (Icell), also a key figure-
of-merit for circuit read performance, may be negatively affected by such mismatch issues.  To address these 
degradation events, several design and process interactions must be evaluated in the context of lithographic correction.   
Uncorrected diffusion, poly, and contact features, shown in figure 4, illustrate front-end layout geometries of the cell 
electrically described in Figure 3.  It can be observed that several process interactions may give rise to electrical 
mismatch described earlier.  SNM degradation results from PFET or NFET mismatch across left and right sides of the 
bitcell, and may be induced from several process integration effects.  Specifically, rounding of PMOS and NMOS 
diffusion features at inner feature “elbow” regions combined with poly misalignment to diffusion can lead to device 
mismatch and SNM reduction.  In addition, simple CD mismatch due to feature-dependent printing variation can result 
in similar device asymmetries.   Figure 5 illustrates simulated SNM responses as a function of pull-down device 
mismatch.  Plotted mismatch percentages are relevant values based on CD and overlay tolerances generally allowed by 
the manufacturing process.  In this case, a 15% device mismatch event roughly corresponds to a 20nm and 30nm CD 
excursion from target, in poly and diffusion levels, respectively.  It is observed that SNM degradation of 10% is 
observed for this level of device mismatch.  Since SNM is a key metric for robust bitcell design, a comprehensive 
lithographic correction scheme must be employed to specifically address process and design interactions that may lead to 
marginal bitcell performance. 
 
In addition to cell stability, one must consider manufacturability of scaled bitcells.  In this work, critical pattern levels 
including diffusion, poly, contact, and metal-1 have been optimized to exhibit robust manufacturing margins.  Figure 6 
illustrates uncorrected layout in an array context of diffusion, poly, and contact layers.  Specific regions are highlighted 
which must have feature corrections optimized against different technical constraints.   In the case of the poly mask 
level, poly enclosure of diffusion must be maintained while being isolated from the near-neighbor wordline poly feature.   
Similarly, interior diffusion “elbows” must be corrected to mitigate gate-widening effects in cases of poly misalignment 
to diffusion.  For the contact level, diffusion features must be optimally corrected to provide robust contact area while 
not reducing process margins associated with diffusion-to-diffusion isolation capability.   These multiple constraints 
must be concurrently satisfied and must provide margins adequate to accommodate allowable manufacturing spec limits.  
Manufacturability considerations in addition to time-zero bitcell functionality concerns must be addressed by the same 
overall lithographic correction strategy.   
 
In this work we have targeted embedded bitcell designs to areas less than or equal to 70% of the area allowed by 
minimum logic design rules.  Further, we have targeted each cell to manufacturable electrical design targets including 
SNM’s of at least 280mV Icell of 60 to 70uA.  Having defined first -pass cell layouts to achieve these goals, the process 
of analytical lithographic correction is started. 
 
 

3. SIMULATION APPROACH 

The process for correcting a bit cell is shown in Figure 7 and is described as follows.  First, it is important to define the 
boundary conditions for the device and for the fabrication process.  As will be shown later, the six poly transistors and 
the gaps between poly pads had no common critical dimension (CD) size focus-exposure process window corridor; so 
extensive correction is required.  In addition, for optimal performance, uniform gate width across active areas needs to 
be maintained.  Further, the gate line end cannot fall into active and the poly cannot encroach active or other poly areas.  
Next, the active pattern must maintain a uniform width under the poly gates.  Contacts must stay open but not so large 



that they fall off the pads of active, poly, and metal.  Metal-1 should cover the contacts completely with out encroaching 
other metal features.  For the process, an audit is conducted to learn imaging capability, process biases and to gather 
information needed to calibrate the lithography simulators with the highest precision and accuracy possible.  This means 
gathering linewidth data for various pitches and process conditions and, in an ideal situation, using the CD data and 
measured values for dose and focus to calibrate physical chemical data about the resist and to extract characteristic 
aberrations for the imaging system.  Since the ideal rarely happens, linewidth data and information from the resist 
supplier to build a model is often used and we assume an aberration-free, diffraction-limited exposure system.  Doing 
this is often inadequate so if it is at all possible, CD data from the fab must be used for best possibility of success.  
Regardless, once the imaging conditions are known and the calibration of the lithography models are complete, the work 
of optical proximity correction can be done.   
 
In this work, we used the unpolarized vector model and resist models of PROLITH™ 3D v7.1.1.  To reduce cycle time 
we distributed PROLITH across thirteen computers whose simulation instructions are spawned and results collected by a 
single master computer using ProLE™ (tariat) interface that we (PAL, Inc.) have co-developed with Jeff Byers of KLA-
Tencor, Austin, TX.  Using the AutoTune module of KLA-Tencor’s ProDATA™ v1.3, photoresist parameters were 
extracted by fitting resist vendor focus-exposure CD data with PROLITH models.  Simulation conditions were set using 
inputs from the wafer manufacturer including illumination scheme, resists used at diffusion, poly, contact and metal-1 
levels, ARCs, film thicknesses, reflectivities, etc. 
 
Then, with the calibrated models, optical proximity correction began.  Corrections were made in an iterative fashion 
using two types of simulations.  The first is a large grid overview of 2 X 1 bit cell for roughing in the required OPC per 
layer.  The large grid size was typically 5% to 10% of the smallest CD.  For refinement, we used multiple metrology 
sample cuts and small grid simulation regions of grid-steps equivalent to less than 1% of the critical feature to simulate 
CD response to variations in focus-exposure conditions.  We then searched for common process corridors using 
ProDATA.  At poly, we monitor three sample cuts for each transistor positioned at the edges and middle of each 
underlying active area and the space between the poly pad and the next transistor pad for a total of eighteen sample cuts.  
This is shown in Figure 8.  Likewise, at active, we monitor two to three sample cuts in the gate region.  For contacts, we 
monitor the size of each contact. For metal, we visually monitor the areas that overlay the contacts.  Once we generate a 
set of reasonable corrections per layer, we then use ProDATA to do a layer-to-layer overlay analysis of various focus-
exposure conditions and then visually interpret critical shape interactions between the layers, making measurements by 
hand where necessary.   
 
In this work, at every step of the process, we used biasing width and height of features, serifs and hammerheads to make 
sizing corrections.  To print a proper regular rectangular shape at the wafer, the transistors have a trapezo idal shape on 
the mask.  This structure is made using successively larger rectangles that result in many sub-resolution jogs on the mask 
pattern.  Interviews with several mask makers revealed that these jogs should be kept less than 10nm to avoid triggering 
false defects during the mask inspection and repair processes.   
 

4. SIMULATION RESULTS 
 
The focus-exposure process widows for all sample regions for the un-corrected poly are shown in Figure 9.  As 
mentioned earlier, there is no common process window that holds the respective CD measurements to a ±10% target.  
Figure 10 looks at this differently by using a bar graph of dose to size for each of the sampled features.  To provide 
correction we first partition the transistors into several rectangles and run a sizing matrix of all rectangles to find a 
combination that gives uniform sizing for a range of focus and exposure conditions; then we use a similar process for the 
pad regions, then combine and rebalance as necessary.  Figure 11 shows the process window after one iteration and 
figure 12 shows them after the final iteration.  A manufacturable process corridor for all features is created following this 
final iteration.  Figure 13 illustrates the simulated features at uncorrected, intermediate correction, and final correction 
stages. 
 
This process is then repeated for diffusion, but in this case, along with biasing we use serifs and anti-serifs to produce the 
desired image shape.  Figure 14(a) shows an overlay of the mask pattern without and with correction; and figure 14(b) 
shows an overlay of the resist images with and without correction.  Figure 15 shows the corrected poly overlaid with 



diffusion at the optimal focus and exposure.  Note how the curvature of the active causes the overlapped regions to lose 
their rectangular shape.  However, as shown in Figure 16, with the corrected diffusion layer, the proper shape is 
maintained throughout the device space.   
 
Other than defocus, we have not considered aberrations in this analysis. This is not preferred, however, in the absence of 
lens data, we can develop hypothetical aberrations for further refinement of the design.  This should be done if the 
diffraction pattern of each critical feature samples different parts of the lens because of pitch variations or because of 
illumination changes between layers or if the same portion of the lens is sampled but the weighted average of the 
aberration changes because of change in duty cycle within the device pitch.   
 
Next, contacts are shown.  Figure 17 shows simulated bitcell contacts.  Figure 18 shows the common process window 
for biased-up contacts and Figure 19 shows for non-biased contacts.  Under these conditions, the non-biased contacts 
yield the best result.  This is true if side-lobes do not print.  PROLITH examination in figure 20 shows that this is the 
case by overexposing the resist 75% from nominal (at best focus), and examining the contacts for side-lobe printing by 
looking at the top the resist and then by taking different z-slice samples from where side-lobes are present until they are 
no longer evident.  Since the non-biased contacts met their process window requirements, no further optimization was 
made.  Optimal condition overlay with active and poly are shown in figures 21 and 22, respectively.  
 
For metal-1, bias, notch and serif corrections were made by hand.  Our success criteria was non-critical, the metal should 
provide total contact coverage and should not bridge with other metal features.   

 
5. ELECTRICAL RESULTS & DISCUSSION 

 
First order yield and e-test results are shared as a first metric of the analytical correction approach.  Table I includes 
yield comparison of several dense, corrected bitcell designs to that of a nominal design rule-compliant, uncorrected 
bitcell.  In this work, dense bitcell designs are targeted for embedded SRAM applications, and are designed to an area 
less than or equal to 70% that of the uncorrected, nominal rules bitcell.  It is seen that yield of cell Y, drawn at 30% 
smaller area dimension is equivalent to that of the logic-rules compliant bitcell.  However, cell Z, scaled to a 40% area 
reduction exhibits a markedly reduced yield response.  From parametric test findings, it is confirmed that this yield loss 
is not due to inadequate correction in critical pattern layers.  Rather, it results from several unrelated process integration 
issues that encounter limits of the process capability for this scaled cell area.  
 
To monitor critical features corrected within each embedded bitcell design, a number of bitcell topology-like test 
structures were designed to isolate possible failure points.  These structures are designed to electrically characterize the 
fundamental design trade-offs within the corrected bitcell footprint.  A key example is the ability to effectively create a 
pull-down FET gating event by adequate poly enclosure of diffusion, while simultaneously isolating latch gate poly from 
the near-neighbor wordline.  Additional examples include isolation of contact features from poly gates, metal-1 isolation 
to near-neighbor features, and contact integrity at minimally enclosed diffusion and poly contact regions.  For 
consideration of each failure mode, a test structure response is monitored for process capability evaluation.  Figures 23 
and 24 illustrate a test structure design testing bitcell poly-to-poly isolation and its electrical test response, respectively.  
Tightly distributed and low current levels indicate robust isolation capability resulting from an adequate feature 
correction.  Similarly, figures 25 and 26 demonstrate electrical test responses as indicated by structures designed to 
characterize poly to contact isolation margin and metal-1-to-metal-1 isolation capability.  Results in each case indicate 
the bitcell design affords parametric yield margins consistent with full circuit die yield comparable to the larger, design 
rule compliant bitcell.   
 
Finally, discrete bitcell testers were characterized to investigate electrical design margins of the various cell designs.  
Figure 27 illustrates overlaid butterfly curves from each of the dense cell designs, Y and Z.   Slight asymmetries in the 
response reduce the SNM of each cell to the lowest value of noise margin on either left or right sides of the butterfly 
response.  Based on electrical test results, this asymmetry is largely due to misalignment effects in the manufacturing 
process rather than linewidth control of the patterning processes. 



6. CONCLUSION 
 

Use of a comprehensive analytical correction methodology has shown to be effective for achieving scaled-area SRAM 
bitcell designs.  Because this methodology takes into account the entire pattern transfer system including tooling and 
materials, it can be used to demonstrate manufacturable embedded cell designs, and may also be used for verification of 
rules or models-based automated OPC routines.   
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Figure 1:  Standard 6-T SRAM bitcell schematic  Figure 2:  Butterfly curve indicating static noise     

margin (SNM) of SRAM bitcell. 
 
 
  
 
 
 
 
 
 
 
 
 
 

 
Figure 3:  Asymmetry in bitcell SNM response  Figure 4:  SRAM bitcell layout.  Circles indicate 

 resulting from inherent process variation.   critical points for OPC to retain cell margin. 

Figure 5:  SNM degradation resulting from pull-down  Figure 6:  Uncorrected cell array.  Black circles 
device mismatch induced by CD offset or overlay  indicate several critical correction points. 
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Figure 7:  Simulation methodology for analytical correction 

 
Figure 8:  Sample cuts for each transistor positioned at Figure 9:  No focus/Exposure process   
edges &  middle of device.  Inter-feature spacings also 
 show window for all uncorrected poly sample cuts.   

 
 
 
 
 
 
 
 
 
 
 
 
 Figure 10:  Optimal dose required at each cut to   Figure 11 Focus/exposure window after 
 achieve desired feature CD.    first poly correction iteration. 
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Figure 12: Focus/exposure window after   Figure 13:  Poly features a) uncorrected, 
final correction iteration.    b) first correction, c) final correction.  

 Figure 14:  (a) Diffusion mask pattern with & without  Figure 15: Corrected poly overlay with  un- 
correction; (b) Simulated resist pattern of same  corrected diffusion at optimal F/E condition. 

 Figure 16: Corrected poly overlay with  corrected Figure 17: Drawn and simulated resist 
 diffusion at same F/E condition from figure 15.  images of bitcell contacts  
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Figure 18: Common process window for 40nm   Figure 19:  Common process window for 
upsized contacts.     un-biased contacts. 

 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
Figure 20:  Resist film thickness z-slices of contacts that were 75% overexposed from nominal. 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21:  Optimal diffusion and contact  Figure 22: Optimal poly and contact resist 
Resist image overlay      image overlay 
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Table 1:  Normalized yield versus cell area  Figure 23: Poly to poly isolation tester 

Figure 24: Poly to poly isolation versus cell type. Figure 25: Poly to contact isolation versus 
cell type  

 
Figure 26: Metal-1 to metal-1 isolation versus  Figure 27: Butterfly curves of scaled area 
bitcell type      bitcells indicated slight asymmetry derived 
       from misalignment. 
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