Copyright 2001, Society of Photo-Optical Instrumentation Engineers This poster was presented at SPIE as presentation number 4346-72 and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Multiple Pitch Transmission and Phase Analysis of Six Types of Strong Phase-Shifting Masks

John S. Petersen^a, David J. Gerold^a, and Marc. D. Levenson^b

^aPetersen Advanced Lithography, Inc. 8834 N. Capital of Texas Highway, #304, Austin, TX 78759 ^bM.D. Levenson Consulting 19868 Bonnie Ridge Way, Saratoga, CA 95070

PSM Topography and Dual Trenches

- A perfectly manufactured phase-shifting mask has an intensity imbalance between the shifted and unshifted intensity peaks.
- Adding a dual trench corresponding to a global phase shift of π radians can equalize the peaks.

Phase Error

- More important, however, is the behavior of the shifted and unshifted peaks through focus.
- Note that the dual trench has shifted the intensity peaks apart.
 The peak equalization is therefore stymied out of focus.
- This means $\Delta \phi = 2\pi t (n-1) / \lambda$ is an insufficient model.

J. S. Petersen, et.al., SPIE Vol. 3564, p. 288 (1998)

Variations on the Theme

Additive

Undercut

Dual Trench w/ Undercut

Selective Biasing

Dual Trench

Side Chrome

Imaging Comparison: Uncompensated SCAA vs. 2 Common Corrections

100 nm L/S pattern imaged at 248 nm with NA=0.744, σ =0.2, k1=0.3. **ProMAX/2D & PROLITH/2** PETERBEN ADVANCED LITHOGRAPHY

Alternating PSM Topography Design

EMF Simulator Z-step Choice

- Simulator 'accuracy' = f(grid size)
 - Test: Standing wave size in homogeneous index = 1,0 slab
 - Results:
 - ProMAX errors reduce with finer grid to at least 500 steps/ λ
 - TEMPESTp errors reduce to limit of 73 steps/ λ (3.4nm @248nm)
 - But step size limit does NOT predict simulator accuracy
 - Convergence criteria differ, thus error magnitudes must be evaluated with user's topographies on each simulator
- Phase-shift error due to grid quantization
 - Round all mask file coordinates to intended step sizes
 - Evaluate (actual desired) phase-shift
 - Choose z-step trading off phase error (0-0.5deg)
 vs. run-time and simulator accuracy

Phase – Transmission Error Calculators

Analyze diffraction orders

- ProMAX: built-in analysis based on Ferguson^[1] method
 - Implemented by C. Mack and modified to handle other than 1:1 duty

TEMPESTp: Export orders and apply Peng^[2] equations

 Assumes equal line/space. For masks with unequal line/space, the Peng approach was used to extract phase but not transmission.

^[1] R.A. Fergusen, A.K. Wong, T.A. Brunner, and L.W. Leibmann, "Pattern-Dependant Correction of Mask Topography Effects for Alternating Phase-Shifting Masks", Proc. SPIE 2440, 349-360 (1995)

^[2] Peng, Song, "Through-Focus Image Balancing of Alternating Phase Shifting Masks", Proc. SPIE vol. 3873, p.328-336

Procedure, cont.

Phase Errors Across Pitch

PETERBEN ADVANCED LITHOGRAPHY

Transmission Errors Across Pitch

Phase and Transmission Results

	Pitch 200nm		Pitch 250nm		Pitch 300nm		Pitch 400nm		Pitch 500nm		Pitch 1100nm	
Correction Type	Ph	Tr	Ph	Tr	Ph	Tr	Ph	Tr	Ph	Tr	Ph	Tr
SCAA(1)	2.0	0.033	1.1	0.005	-0.2	0.002	0.2	0.008	0.3	0.002	0.1	0.000
Asym Bias (2)	-2.3	-0.041	-0.4	-0.004	0.0	0.000	0.2	-0.013	0.6	-0.002	0.9	0.001
SCAA	20	0.024	10	0.005	0.2	0.024	06	0.019	0.2	0.000	01	0.000
(uncorrected)	3.9	0.051	1.2	0.005	-0.2	0.024	0.0	0.010	0.2	0.009	0.1	0.002
AsymBias (4)	-0.6	-0.064	0.4	-0.026	0.3	-0.018	0.5	-0.022	0.8	-0.010	0.9	-0.001
Additive	20	0.120	17	0.021	1 /	0.001	0.2	0.002	0.2	0.004	01	0.004
(uncorrected)	-0.0	0.120	-1.7	0.051	-1.4	0.001	-0.2	-0.002	-0.3	0.004	0.1	0.001
Additive (6)	-3.6	0.099	-0.2	0.029	0.2	0.001	1.7	0.002	1.4	0.006	1.9	0.005
Undercut (7)	-2.1	-0.047	-0.2	0.003	0.3	-0.023	-2.7	-0.003	-1.5	0.001	-2.3	0.008
Dual-trench +	00	0 000	10	0.060	1 2	0.007	20	0.024	12	0.015	50	0.007
Undercut (8)	-0.0	-0.000	-1.2	-0.000	1.2	-0.007	3.0	-0.024	4.3	-0.015	5.0	-0.007
Phase only (9)	-4.1	-0.195	0.7	-0.136	-0.3	-0.108	-1.2	-0.068	-0.4	-0.046	-0.5	-0.017
None	-3.3	-0.205	1.3	-0.147	0.4	-0.117	-0.6	-0.077	0.2	-0.056	0.0	-0.025
Dual-trench (11)	12.4	0.037	0.3	-0.007	-2.2	0.025	-5.2	0.000	-5.6	0.005	-7.9	0.000
KEY Phase:	Effec	tive ph	ase - 18	0deg	Trans	missior	n: (shif	tedspa	ce tran -	unshif	ted spac	e tran)
GOOD	05											

-Conditions for each mask type fixed by optimization at 100/200nm line/space -100nm line masks ranked by overall performance across pitch using normalized power in central diffraction orders as figure of merit.

>1.5

UN

POOR

>.05

Notes on Mask EMF Results

* Mask Conditions after optimization for 100-200 line-space, λ =248nm

- 1: SCAA, 15nm ARC
- 2: Asym Bias, 181deg phase, 40nm bias
- 3: SCAA, no correction
- 4: Asym Bias, 15nm ARC, 40nm bias
- 5: Additive, uncorrected
- 6: Additive, 182 deg phase

- 7: Undercut (UC), 100nm UC, 176.4deg phase
- 8: Dual-trench + Undercut, 225nm+20nm 173.8deg phase
- 9: Phase only, 179.7deg phase
- 10: Geometric (no correction)
- 11: Dual-trench, 270nm DT 172.5deg phase

Ranking by diffraction order power:

	Across P	itch Range	9	
	Phase	Trans	power sum*	pitch n
SCAA (1)	2.2	0.033	0.00002	\mathbf{Y} D $(\mathbf{D}0 / 2\mathbf{D}1)$
Asym. Bias (2)	3.2	0.043	0.00004	*Power sum = $2 (P0 / 2P1)_n$
SCAA (uncorrected)	4.1	0.033	0.00006	pitch 1
AsymBias (4)	1.6	0.063	0.00007	P0 = nower in central diffraction order
Additive (uncorrected)	3.9	0.122	0.00014	$\mathbf{D}_{1} = \mathbf{u}_{1}$
Additive (6)	5.4	0.098	0.00017	PI = power in 1st diffraction order
Undercut (7)	3.0	0.055	0.00017	(2P1 because of two first orders)
Dual-trench + Undercut (8)	14.6	0.054	0.00051	
Phase only (9)	4.8	0.177	0.00076	
None ("geometric")	4.6	0.180	0.00089	
Dual-trench (11)	20.3	0.043	0.00123	

AltPSM MEEF Comparison

- Masks: SCAA (15nm CrO₃ ARC) and Asymmetric Bias (+40nm bias, 181deg phase). Two best masks chosen from earlier table ranking across pitch performance.
- Input variation: ±40nm mask CD variation for the two best altPSM masks
- Simulation outline:
 - Construct ProMAX masks that have wafer line dimensions of 90nm, 100nm and 110nm with 300nm pitch
 - Run EMF simulations
 - Export "grayscale" (intensity and phase slice) masks to PROLITH 7.0 and simulate focus-exposure. Monitor CD, sidewall angle, resist loss and image placement.
 - Port FE matrix results to ProDATA and analyze process window using line CD and image placement as responses.
 - CD limits 90 to 110nm
 - Image placement |–5nm to 5nm|

NILS Comparison of SCAA with 15nm ARC and Asymmetric Bias

- NILS through focus for 300nm pitch both mask types are identical.
- Image CD for SCAA is least sensitive to focus.

Simulation Conditions PROLITH 7.0 0.63 NA, 248nm 0.30 sigma

Asymmetric Bias Process Window MEEF for 300nm Pitch

SCAA Process Window MEEF for 300nm Pitch

Overlap Process Window Extrapolated Data Used

Focus

Simulation Conditions PROLITH 7.0 0.63 NA, 248nm 0.30 sigma 304nm UV113 on 20nm CD11+62.5nm AR-5 Klarity ProData PW analysis %EL=5% Lower Limit P= Image Placement Spec of |-5nm to 5nm|

ADVANCED LITHOGRAPHY

PETERBEN

MEEF Comparison Summary

- For the two best altPSM mask types, SCAA with 15nm Top ARC and 40nm Asymmetric Bias:
 - Similar MEEF of 0.9
 - Common process window of 0.3µm with 2% Exposure Latitude (%EL) for ±40nm mask CD variation.
 - Production process requires less than ±40nm mask CD variation.

- For SCAA performance within a single line:
 - 90nm and 100nm lines have 12 to 14% more DoF than AsymBias
 - 110nm lines have 2.4% more DoF than AsymBias
- 110nm line performance is limited by image placement for both masks, but AsymBias is the worst.

Туре	Line Size 300nm Pitch	E _{S=100nm}	CD @ E _{S=100nm}	MEEF	E _{PWCenter}	DoF	w/X% EL	Phase Error	Tran Error
SCAA+15nm ARC	90.0		92.0		51.6	1.95	5	+0.25	-0.005
SCAA+15nm ARC	100.0	54.2	98.0	0.88	55.0	2	5	-0.21	0.002
SCAA+15nm ARC	110.0		109.0		59.3	1.67	5	-0.64	0.012
SCAA+15nm ARC	Common				55.0	0.3	2		
AsymBias	90.0		91.0		52.7	1.73	5	+0.21	-0.013
AsymBias	100.0	56.5	97.0	0.90	57.3	1.75	5	-0.02	0.000
AsymBias	110.0		109.0		61.5	1.63	5	+0.52	-0.005
AsymBias	Common				56.0	0.3	2		

Conclusion

- SCAA with 15nm ARC performed best across pitch regarding phase and transmission errors at the mask plane, followed closely by the asymmetric biased mask (with 40nm bias each side of shifted space and 181deg design phase shift)
- All mask types except SCAA required EMF simulation for topography optimization
- EMF mask optimization requires systematic simulator setup and grid quantization to bound designed-in errors from desired phase, and to optimize simulator accuracy
- NILS through focus @ 300nm pitch for best SCAA and biased mask types are identical, whereas Image CD through focus is better for SCAA
- For best SCAA and biased masks, each has similar MEEF of 0.9
 - Common process window of 0.3µm with 2% Exposure Latitude
 (2% due to large line change chosen, +/- 10nm at wafer, +/- 40nm at mask)
 - Even with small MEEF, both mask types require less than ±40nm mask CD variation for a production process
 - 110nm line performance is limited by image placement for both masks, but AsymBias is the worst

Acknowledgements

Chris Mack, FINLE Technologies, a division of KLA-Tencor, for ProMAX development and consulting

Tom Pistor, Panoramic Technologies for TEMPESTp

