Copyright 2001, Society of Photo-Optical Instrumentation Engineers This material was presented at SPIE's Microlithographic Techniques in Integrated Circuit Fabrication II conference as presentation number 4226-04 and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Optical Proximity Strategies for Desensitizing Lens Aberrations

John S. Petersen Petersen Advanced Lithography, Inc. Jpetersen@advlitho.com

Lithography for Semiconductor Manufacturing II, June 1, 2001 Edinburgh, Scotland

Resolution Loss Contributor: Aberrations

• Aberrations blur

Types of Aberrations (Seidel Aberrations)

- Monochromatic
 - Spherical
 - Coma
 - Astigmatism
 - Field of Curvature
 - Distortion
- Chromatic
- Defocus

Process Window Loss with Aberrations k1 0.771 0.690 0.661 0.592

Less aberration balancing

J. S. Petersen, SPIE Vol. 1088, p. 540 (1989)

Overlapped Process Window for 0.10mm resist CD (CLM-001 results -- excluding 500 nm pitch data)

Optical Extension Roadmap

Extrapolated from 248nm Experiment and Simulation

Table of Hypoth		Reduc	ed Aberr	ations						
1			248			193			193	
Feature		iso	dense	СН	iso	dense	СН	iso	dense	СН
Duty Cycle		1:3	1:1	1:2	1:3	1:1	1:2	1:3	1:1	1:2
C).53	70	140	187	55	<u>109</u>	<u>146</u>	48	96	127
C).57	65	<u>131</u>	174	51	102	<u>135</u>	44	89	<u>119</u>
	0.60	62	<u>124</u>	165	48	97	<u>129</u>	42	84	<u>113</u>
).63	59	<u>118</u>	157	46	92	<u>123</u>	40	80	<u>107</u>
).68	55	<u>109</u>	<u>146</u>	43	85	<u>114</u>	37	75	99
C).70	53	<u>106</u>	<u>142</u>	41	83	110	36	72	97
C	0.80	47	93	<u>124</u>	36	72	97	32	63	84
factor		0.25	0.50	0.33	0.25	0.50	0.33	0.25	0.50	0.33
nPitch (Ideal)		0.5	0.5	1.0	0.5	0.5	1.0	0.5	0.5	1.0
nPitch (Full Field)		0.6	0.6	1.2	0.6	0.6	1.2	0.53	0.53	1.05

 $feature_size = \frac{pitch_{normalized_Full_Field} \cdot factor \cdot \mathbf{l}}{NA}; factor_from_experiment$

Full Field assumes 20% loss of workable resolution due to aberrations!

Black=100nm node

Paper 4226-04, Petersen

Blue=130nm node

J. S. Petersen, et.al., SPIE Vol. 3564, p. 288 (1998)

Gray=70nm node

Image Process Integration Examples

Using IPI to Attack Aberrations:

- Illuminator Shape
- Scattering Bars
- Phase-Shift Masks

Ideal 2-Beam Imaging Has Infinite DOF

Quad Examples

Hard Stop not shown

J. S. Petersen, et.al., SPIE Vol. 3564, p. 288 (1998)

Conventional Illuminator 250nm Contact Hole DoF Results

Conventional Illumination, sigma=0.74

DOF = (0um/22 and 17.5mm, 0.1um/15mm)

No Common Corridor

Strong Quadrupole Illuminator 250nm Contact Hole DoF Results

focus/zone	BI	ТІ	BI Z	TI Z	BLM	TLM	Axis	BRM	TRM	BR7	TR7	BR	TR			
-0.85	DL				DEM		7.040	Bran		DILL		BIX				
-0.8			_											161	NIA = 0.52/2	10nm
-0.75		0.197		. _]		- 1				_				151	INA = 0.33/2	4011111
-0.7		0.225		$1\mathbf{A}$		ΛΤ		11 r	V9 1		rp			Res	ist [.] UVIIH	S
-0.65		0.229				UI		ul	v a	l U I						
-0.6		0.239												500	pitch	
-0.55				0.248	0.238	0.231	0.251	0.229	0.227	0.221	0.251				1	
-0.5	0.198			0.258	0.239	0.246	0.259	0.236	0.248	0.237	0.255	0.228				
-0.45	0.215			0.256	0.252	0.253	0.263	0.246	0.255	0.249	0.259	0.249				
-0.4	0.227			0.262			U.204	0.202		0 252	0.261	0.253	0.244			
-0.35	0.236			0.265	0.257		0.259		0.256	0.254	v	0.259	0.247			
-0.3	0.242			0.266		_	0.262		0.253	0.256	0.262	V	0.243		Raticle Mar	•
-0.25	0.246	0.255		0.268			0.266		0.262	0.254	0.265	0.266	n 252		Reficie Ma	
-0.2		0.251	0.262	0.269			0.268		0.264	0.251	0.267	0.259	0.2	TL	100%	TR
-0.15	<u> </u>	0.252	0.256	0.264			0.273		0.265	0.252	0.266	0.263	0.259			
-0.1		0.248	0.258	0.255		0.000	0.271		0.266	0.246	0.268	0.259	0.262) [TLZ 75% 1	ΓRZ
-0.05	040		0.251	0.257	0.007	0.266	0.200	0.004	0.267	0.249	0.200	0.262	0.004			
0.05	48		0.240	0.261	0.267	0.26	0.267	0.264	0.264	0.248	0.263	0.252	0.26		TLM TRM	
0.05	0.24		0.240	0.256	0.202	0.201	0.203	0.201	0.264	0.243	0.201	0.240	0.254		50%	
0.1	0.241		0.230	0.245	0.257		0.250	0.259	0.255	0.234	0.255	0.254	0.254		Axis	
0.10	0.237	0.214	0.225	0.200			0.256	0.232	0.254	0.20	0.246	0.234	0.233		BLM BRM	
0.2	0.220	0.214	0.223	0.221			0.200		0.252	0.214	0.240	0.233	0.240		DEW DRW	
0.20	0.214	0.191	0.211	0.231			0.201	0.249	0.232	0.214	0.239	0.240	0.200		BLZ I	BRZ
0.3	0.195			0.214	0 254		0.245	0.243	0.247	0.190	0.230	0.220	0.209			
0.00					0.231	0 235	0.243	0.242	0.245		0.221	ļ		DI		DI
0.4					0.231	0.200	0.232	0.223	0.223		0.221			BL		Br

DOF = (0.55um/22mm, 0.7um/17.5mm, 0.9um/15mm) dose=19mJ

Large Common Corridor

Effect of Source Shape on Aberrations

Figure 24. The lens aberration concern can be further minimized with the use of custom illumination aperture (a weak quadrupole type) that combined with SB-OPC.

J. Fung Chen, T. Laidig, K. E. Wampler, R. Caldwell, K. H. Nakagawa, A. Liebchen, "A Practical Technology Path to Sub-0.10 Micron Process Generations Via Enhanced Optical Lithography", 1999 Semiconductor Technology T-CAD Workshop and Exbition Vol. 3, Hsin-Chu, Taiwan, section 8, paper 2 (1999)

Image Process Integration Examples

Using IPI to Attack Aberrations:

- Illuminator Shape
- Scatter Bars
- Phase-Shift Masks

160nm:800nm with Double Scattering Bars

w=160nm; x=60nm; y=300nm; z=80nm

> Nishrin Kachwala, John S. Petersen, J. Fung Chen, Mike Canjemi, Martin McCallum, SPIE Vol. 3679 Paper 05, Santa Clara, CA (1999)

999) PETERSEN ADVANCED LITHOGRAPHY INC.

Why Do Scattering Bars Work?

Scattering Bar structures move light out of the zero order and move some of the higher order light to the edge of the lens, giving it an appearance similar to that of a dense feature.

Electric Field Amplitude for Isolated Features With and Without Scattering Bars

X Pupil Position (Normalized NA)

160nm Annular Illumination With 6% Attenuated PSM

Figure 14: 1:2 and isolated feature with 0.6/0.8 annulus, 0.6NA, 6% attenuated A) No overlap without OPC B) Overlap with SRF OPC on the isolated feature

Nishrin Kachwala, John S. Petersen, J. Fung Chen, Mike Canjemi, Martin McCallum, SPIE 3679, p. 55 (1999)

Paper 4226-04, Petersen

PETERSEN ADVANCED LITHOGRAPHY

The Effect of Scattering Bars on Aberrations

Observations:

1) Dense feature are minimally affected by lens aberration.

2) SB improves DOF for isolated & semiisolated features.

Combined Aberration Stepper (SB-OPC) CD=0.18 µm, 0.6NA, 0.8Sigma, Exposure=13.5mJ/cm 2 0.21 - P=0.42um - P=0.72um 0.20 P=1.02um - P=1.32um 0.19 0.18 0.17 0.16 0.15 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 -1 **Defocus Settings (microns)**

J. Fung Chen, T. Laidig, K. E. Wampler, R. Caldwell, K. H. Nakagawa, A. Liebchen, "A Practical Technology Path to Sub-0.10 Micron Process Generations Via Enhanced Optical Lithography", 1999 Semiconductor Technology T-CAD Workshop and Exbition Vol. 3, Hsin-Chu, Taiwan, section 8, paper 2 (1999)

PETERSEN ADVANCED LITHOGRAPHY INC.

Diffraction Pattern of 100nm Lines

Paper 4226-04, Petersen

PETERSEN ADVANCED LITHOGRAPHY INC.

Electric Field Magnitude

Pitch (nm)	OPC	Electric Field Magnitude							
		Zero Order	First Order	Second Order					
300	Bias	0.505	0.374						
350	Bias	0.657	0.327						
500	Bias	0.680	0.307	0.269					
600	π -Scatter	0.702	0.119	0.274					
	Bar/Bias								
	•	•	•						

Diffraction Pattern Convolved with Aberrations

500nm Pitch

350nm Pitch

Paper 4226-04, Petersen

LITHOGRAPHY INC. PETERSEN ADVANCED

Diffraction Pattern for 100nm Line on a 500nm Pitch

No Assist

With Assist

• Scattering bar pushes energy to the higher order.

100nm Center of Focus Adjust of the 500nm Pitch Using Scattering Bars

Z9-confounded between -0.07 waves

CoF Dependence on Pitch for Z7 and Z9

Z7	Z9	Pitch (nm)									
		260	300	500	600						
0.000	0.000	0.00	0.00	0.00	0.00						
-0.007	0.000	0.00	0.00	0.00	0.00						
-0.070	0.000	0.00	0.00	0.00	0.00						
-0.007	-0.007	0.00	0.00	0.00	0.00						
-0.070	-0.070	+0.11	+0.08	+0.01	+0.01						
0.000	-0.070	+0.12	+0.08	0.00	+0.01						
0.000	-0.007	0.00	0.00	0.00	0.00						
0.000	-0.070	Х	X	-0.10 (no SB)	-0.04 (no SB)						

Image Process Integration Examples

Using IPI to Attack Aberrations:

- Illuminator Shape
- Scatter Bars
- Use Phase-Shift Masks

Correcting for Aberrations with Mask Design

- For contacts, mask design can be used to minimize symmetric aberrations.
- 0.55 NA/ 0.51 sigma/ 365nm
- Compare two masks for making 350nm contacts on 1050nm pitch:
 - -Without Frame
 - 510nm contact 8% AttPSM
 - -With 290nm Frame
 - 430nm contact 8% Ternary AttPSM

Figure 1: Transmission and Phase Discetization of a Bessel Contac

Lithography Results, Without Frame

CD vs. Focus/Exposure

Exposure (mJ/cm2)

ocus (um)

PETERSEN ADVANCED LITHOGRAPHY INC.

Paper 4226-04, Petersen

Lithography Results, With Frame

CD vs. Focus/Exposure

208

Process Window

PETERSEN ADVANCED LITHOGRAPHY INC.

PSM Effect on Focal Plane Deviation

R. J. Socha, et al, SPIE 3748, 290 (1999)

Correcting Lens Aberrations

• Determine aberrations:

Know your lens and make; the aberrations they have will dictate what can be done with RET.

• Use illuminator and mask design to improve tolerance to aberrations.

My Optical Forecast

]	Feature Siz	e		Li	nes		Contact Holes			
Pitch	0.5 Pitch	MPU	Year	kpitch	NA	λ	Year	kpitch	NA	λ
360	180	140	1999	0.54	0.55	365	1999	0.74	0.70	365
260	130	100	2001	0.54	0.52	248	2001	0.74	0.66	248
200	100	70	2004	0.54	0.67	248	2004	0.74	0.86	248
140	70	50	2007	0.54	0.96	248	2004	0.74	0.67	193
140	70	50	2007	0.54	0.74	193	2007	0.74	0.95	193
140	70	50	2007	0.54	0.61	157	2007	0.74	0.77	157
100	50	35	2010	0.54	0.85	157	2007	0.74	0.62	126
100	50	35	2010	0.54	0.68	126	2010	0.74	0.06	13
100	50	35	2010	0.74	0.10	13	2010	0.74	0.09	13
60	30	25	2013	0.74	0.16	13	2013	0.74	0.15	13

Assumes Weak PSM with Dipole or Strong PSM with OPC for Lines

Resolution Enhancement Trek

